High-Accuracy Pneumonia Classification via Ensemble Learning on Chest X-ray Imagery
Abstract
Keywords
Full Text:
PDFReferences
Alqaduh, H., Alsleti, M., Alsharif, R., Qasmieh, I. A., & Alqudah, A. M. (2021). Employing texture features of chest x-ray images and machine learning in covid-19 detection and classification. Mendel, 27, 9–17. https://doi.org/10.13164/mendel.2021.1.009
Aslan, M., & Sabanci, K. (2021). A novel approach for COVID-19 diagnosis using a hybrid deep learning model on chest X-ray images. Journal of Medical Systems, 45(4), 1–13.
Batista, A. F. de Moraes, Miraglia, J. L., Donato, T. H. R., & Filho, A. D. P. C. (2020). COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. MedRxiv. https://doi.org/10.1101/2020.04.04.20052092
Johri, S., Goyal, M., Jain, S., Baranwal, M., Kumar, V., & Upadhyay, R. (2021). A novel machine learning-based analytical framework for automatic detection of COVID-19 using chest X-ray images. International Journal of Imaging Systems and Technology, 31(3), 1105–1119. https://doi.org/10.1002/ima.22613
Karim, F., & Rahman, M. A. (2022). A novel deep learning approach for pneumonia detection using chest X-ray images. Multimedia Tools and Applications, 81(10), 14357–14376.
Khan, A. I., Shah, J. L., & Bhat, M. M. (2020). CoroNet: A deep learning model for automated detection and classification of COVID-19 from X-ray images. Computers in Biology and Medicine, 121, 103863.
Khan, N., Ullah, F., Hassan, M. A., Hussain, A., et al. (2020). COVID-19 classification based on Chest X-Ray images using machine learning techniques. Journal of Computer Science and Technology Studies, 2, 01–11.
Khuzani, A. Z., Heidari, M., & Shariati, S. A. (2021). COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. Scientific Reports, 11(1), 9887. https://doi.org/10.1038/s41598-021-88807-2
Mary, L. W., & Raj, S. A. A. (2021). Machine learning algorithms for predicting SARS-CoV-2 (COVID-19)-A comparative analysis. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), IEEE, pp. 1607–1611. https://doi.org/10.1109/ICOSEC51865.2021.9591801
Mijwil, M. M. (2021). Implementation of machine learning techniques for the classification of lung X-Ray images used to detect COVID-19 in humans. Iraqi Journal of Science, 62(6), 2099–2109. https://doi.org/10.24996/ijs.2021.62.6.35
Narin, A., Çayır, C., & Pamuk, G. (2021). Automated detection of COVID-19 from chest X-ray images using convolutional neural networks. Chaos, Solitons & Fractals, 139, 109961.
Ohata, S. S. Y., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1), 1–18. https://doi.org/10.1186/440537-019-0276-2
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. (Note: This is a foundational reference for the ML algorithms' implementation)
Rachmadany Rachman, R., Dewang, S., Ilyas, S. D. A., & Juarlin, E. (2024). Identification and classification of SARS-CoV-2 on chest CT-scan image using GLCM-based feature extraction with K-NN and naïve bayes methods. AIP Conf. Proc. 2774, 050011. https://doi.org/10.1063/5.0171488
Rachmadany Rachman, R. (2022). Identifikasi dan Klasifikasi Covid-19 pada Citra Chest CT-Scan Menggunakan Ekstraksi Fitur Berbasis GLCM dengan Metode K-NN dan Naïve Bayes (Magister Thesis). Universitas Hasanuddin.
Rasheed, J., Hameed, A. A., Djeddi, C., Jamil, A., & Al-Turjman, F. (2021). A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdisciplinary Sciences: Computational Life Sciences, 13, 103–117. https://doi.org/10.1007/s12539-020-00403-6
Rahman, T., et al. (2020). COVID-19 detection using chest X-ray images with deep learning: A comparative study. Computers in Biology and Medicine, 121, 103863.
Rasheed, J., Hameed, A. A., Djeddi, C., Jamil, A., & Al-Turjman, F. (2021). A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdisciplinary Sciences: Computational Life Sciences, 13, 103–117. https://doi.org/10.1007/s12539-020-00403-6
Saraiva, A. A., et al. (2021). COVID-19 detection from chest X-ray images using transfer learning techniques. Expert Systems with Applications, 176, 114849.
Saygili, A. (2021). A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using machine learning methods. Applied Soft Computing, 105, 107323. https://doi.org/10.1016/j.asoc.2021.107323
Ulhaq, A., et al. (2022). A hybrid deep learning approach for COVID-19 detection using chest X-ray images. Medical Image Analysis, 82, 102558.
Yadav, M., Perumal, M., & Srinivas, M. (2020). Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos, Solitons & Fractals, 139, 110050. https://doi.org/10.1016/j.chaos.2020.110050
DOI: http://dx.doi.org/10.22373/p-jpft.v11i2.30442
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
OFFICE:
Gedung Fakultas Tarbiyah dan Keguruan, Universitas Islam Negeri Ar-Raniry Banda Aceh. Jalan Syeikh Abdul Rauf, Syiah Kuala, Kopelma Darussalam, Syiah Kuala, Kota Banda Aceh, Aceh, 23111. email: jurnal.phi@ar-raniry.ac.id
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License